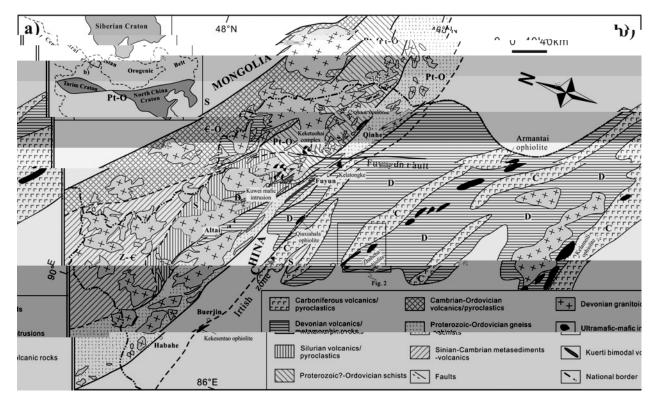


(Received 1 2015 accepted a 2016 first published online 1 2016)

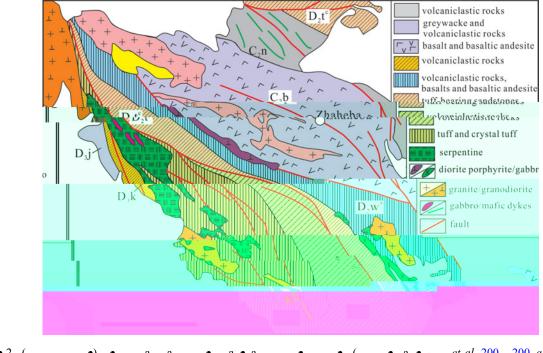
Ab _ac e Ъ e e (e a ea e a e. e ae aa e ea a e a e a e a e e e e e e a ~ 400 a. e e e e a e e e aa eee e a a e a e. e e e e a e e e e. ϵ (t) (13 20) **a** $\textbf{a} \quad \textbf{e} \ \delta^1$ (+5.3 %) a.e e e a e e a e ee a e . a e aa a e a a ea e e e - e a e ... e a a e e e ea e a / ae a е, ea e e e ee eea ea e a ea. e ea e ea e e ea e ea ee e a e e e e e, - e, a e e , e a e e (a e a e.

1. I e ee e. e a e . . **e** e . е **a** et al. 200 e & e, 200 **a** a et al. 2012 **a** et al. 2012, 2013 a a et al. 2013), a a a a e ea a e, e ea e e e et al. 200 e e (., 1 **a** et al. 200 a). a e a ee e e e e (e a , 1 e , 1 3 a a e e et al. 2000 \mathbf{a} , $\mathbf{1}$ & e, 2003 a et al. 200 ea e, 2014). e & e (2011) a e, e e a ca e, a a- a e e, (),e a. , ea e (2014) e eee e e e

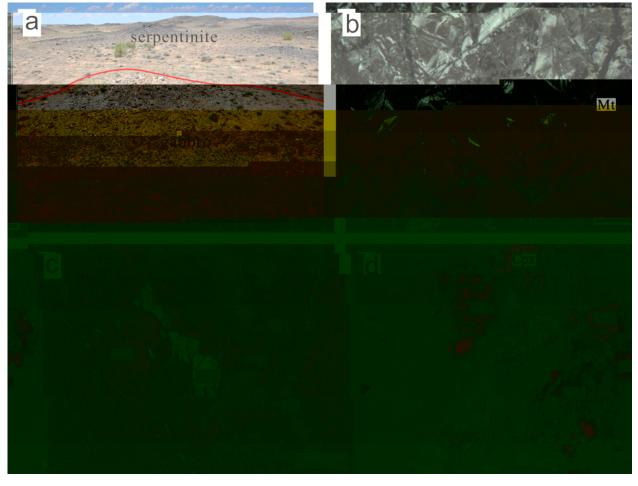

.a 16 .a.

† ... e e e

e , .e. e e e e a e e e a e a e & . (e . ö , a a \mathbf{a} , $\mathbf{1}$ $\mathbf{3}$ \mathbf{a} & e, 2000 e et al. 2002 a et al. 2004, 200 a) (. . 1a). e a e e e , **a** . e . e . e a e (**a** et al. 200 a,b , 2012). ea e ...a, e & a a e e a e aeee e e e a e ea , e eae,. **e** aaaa e aa, a , 1 3 a et al. 2003 a et al. 2003 **a** et al. 200 a) (. . 1). e a e ee a e . e e е, е e-, . e a a e a


. , . е

.- .



a c a ccac
. , ee cac c ea , e a , a ca c c c
a ca c c c c a c
e . . a ca c c (1) e c c a c
a c a c a c c c ca c
c a ca (2) c c c c a c
c c c c a c c c a c

e > 0% e e e $e(\ldots3,)$. a e e e e ae e e e e e e e e e a a e (e. . et al. 2013). e e e e e e e e e e a a a e (40 0%) a e e (30 50%) a e a e e (5 10%) a e (... 3). e e a e a . e e . a e ae e . e a a e a a et al. 2006). ee a e a e ea e e , 1 3).

. e 2. (. . e) e a a e a e a e a e e (e a e . et al. 200 , 200 a a a , 1 3).

a a e . a e e a aaae e e ae e e . e.

3. A a ca c 3.a. Z c U Pb a a H O a a ee eaae a a a e (2013 01, 46° 32 51 , °2 4) a a a e (2013 02,46°33 2 , °2 36) e - e a e e e e e e . aa eee() ae eea e ea ee ae e eeaa e . . eaeaa . . -e e e a ae a e 1a e . e e a a e a a e 2, e e e , a a -2010*b*). e ea e e e e a e e a e e e, e e a a e a a e 3 a a a e a .// ... **a** . **a** . e. . /, e .

ee 15 e a ee a a e a 15

ea e ea a aaaa e e e e e e e a a e a e a e a e a e a ,// ... **a** . **a** . e. . /. e .

3.c. W - c a a c a c c c c (2004). a a e e a e e a 2%. accee ceaa e a e -ee e a ee a 3 5%. eaa a e.a e e a e1.

 a e
 ca e e
 ee
 ea e /⁶ a e a e a e e 0. 102 e a a a 0. 0506 -1, a a ac aa cc ac c a c2.

4. A a ca 4.a. Z c U Pb a

e a a eae a e a

e . a ae a e a

a . 100 150 μ a a e a a

11 21. ae, e a

e a , ea e aae
a a a a (ee e .4a).

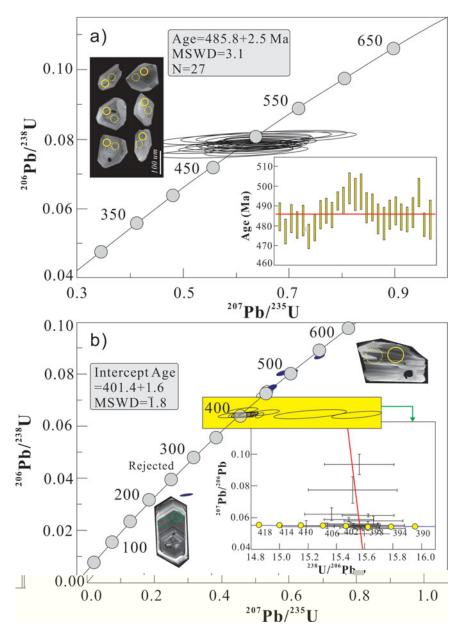
aa e ee e a e, a 0. . e - e e a a e 30 e e e e e a a e 4 5. ± 2.5 a

Age and geochemistry of the Zhaheba ophiolite $\frac{1}{2}$	2 242	60: 5	30
Zhaheba ophiolite			

a e 1. e	c a	e e e	e, aea	aa e a	ica c	C				
a e e	2013 01-1	2013 01-3	20132 01-4	2013 01-5	2013 01-6	2013 01-	2013 01-	2013 01 1	2013 01 2	2013 01 4
					Major elements	s (%)				
2	3.0	4 .20	3 .41	3 .62	3 .22	3 . 2	3 .05	4 .22	46.4	51.2
2	0.05	0.20	0.05	0.05	0.04	0.05	0.04	0.14	0.12	0.2
2 3	0.61	1. 6	1.04	0.6	0. 0	0. 4	0. 0	1 .2	1 .64	1 .33
1922 3 (1 (2	3 .21)-5530. 1) 4	15 1 AG 6		.36	.5	.16	. 4	3.6	3.24	3.
13.2.1(.1. (3	3 .21)-553 <mark>0</mark> . 1) 4	1-5 1 426 0.10.6	0.11	0.11	0.11	0.0	0.11	0.0	0.0	0.0
	3 .21	24.5	3.2	3.	3 .0	3 .31	3 .44	10.04	.03	5.
a	0.12	15.42	0.15	0.14	0.2	0.10	0.14()-5 31(.0)	10 51431 -() 0	5.4 5 3.53 4.1(.12

a e	1.		e
-----	----	--	---

e e	2013 01-1	2013 01-3	20132 01-4	2013 01-5	2013 01-6	2013 01-	2013 01-	2013 01 1	2013 01 2	2013 01 4
	0.005	0.064	0.00	0.005	0.00	0.003	0.003	0.051	0.044	0.222
	0.021	0.34	0.044	0.042	0.0 2	0.031	0.033	0.310	0.25	1.450
	0.004	0.04	0.00	0.00	0.011	0.005	0.005	0.04	0.043	0.21
	0.011	0.232	0.036	0.044	0.012	0.034	0.00	0.123	0.0 0	0. 3
2	0.0 0	0.036	0.03	0.03	0.06	0.026	0.025	0.046	0.031	0.06
•	0.26	1. 10	6.600	1. 0	0. 3	0.233	1.150	1.5 0	0.516	0.1 5
	0.406	0.0 2	0.12	0.112	0.0	0.1	0.054	0.16	0.1 1	0.6 5
	0.046	0.034	0.014	0.02	0.050	0.030	0.010	0.050	0.02	0.130
	0.1 1	0.144	0.203	0.364	0.042	0.0 4	0.0	0.066	0.042	0.0 3
e	2013 01 5	2013 01 6	2013 01	2013 01	2013 01	2013 03 2	2013 03 3	2013 03 4	2013 03 5	2013 01 3
e			(1)	(1)	(1)	(1)	(1)	(1)	(1)	(2)
			,	,	Major elements		()	()	,	,
2	4 .1	45.	4 .	53.1	51. 1	50.40	50.54	50.52	51.22	52.3
$\overset{2}{2}$	0.34	0.15	1.40	1.24	1.31	1. 0	1.63	1.31	1.1	0.33
2 3	1.	1 .5	16.5	16.1	15. 3	15.	16. 6	15.55	15.4	1 .61
2 3	4.52	3.34		.11	.43	.0	.50	.42	. 2	3.44
	0.0	0.0	0.11	0.10	0.11	0.13	0.11	0.14	0.12	0.0
	6.	.42	4. 0	4.2	4.41	5.	3.2	6.06	.14	4.
	11.03	12.61	6.22	5. 5	6.3	6. 5	4.52	.4	.26	. 0
2	4. 6	.3	. 2	.3	.00	4.52	.31	4. 0	4.0	.11
	0.13	0.11	0.3	0.31	0.42	2.04	0.33	1.2	2.03	0.1
5	0.04	0.02	0.62	0.62	0.65	0. 4	0.6	0.4	0.44	0.04
	3. 2	3.26	4.24	2.54	2. 3	2.2	5.14	2.65	1. 3	2.
	. 5	. 2	. 6	. 0	.4	.40	. 1	.6	.6	 1
	4.	.4	.11	. 0	.42	6.56	.64	6.0	6.11	.2
#	5	1	55	54	54	56	41	56	64	4
π	3	1	33	54	Trace elements (p		71	30	04	7
	.0	4. 5	1.16	1.12	1.4	.0	40.4	5.2	6. 2	5. 1
•	0.22	0.135	1.2 4	1.6 3	1.316	1. 53	1.034	1.100	0.5 5	0.62
	25.0	23.	1 .6	1 .5	1 .5	.5	1 .2	25.2	1.	1 .0
	11	3.	1 6	166	1 2	22	22	254	1	5.
	34.	163	60.5	62.6	64.1	116	1.	0.	203	23.
	24.2	21.6	26.	23.6	24.6	2 .	2 .5	2 .0	2 .0	16.4
	4.	1 5	63.6	50.	51.4	6.	2 .	5 .3	132	1.1
	52. 4	55.5						. 5 6.26622)-6240		


_																						
a	e	2013	01 5	2013	01 6	2013	01	2013	01	2013	01	2013	03	2	2013	03 3	2013	03 4	2013	03 5	2013	01 3
	e					((1)		(1)		(1)		(1)		(1)	(1)	(1)		(2)
-		3.		1	.20	3	.60	46	i. 0	4	.30		23.40		43.0	00	25	.20	32	. 0	6	.56
e	•			2	6		50		1(15	2 6(0)-	5 46 41	4 30)-5	1 3	0								

a -5046.001. 0

a e 1. e

a e	2013 01 11	2013 02 1	2013 02 2	2013 03 1	2013 03 6	2013 01 10	04 06	04 24	04 2	03 1
e	(2)	(2)	(2)	<u>(1)</u>	(1)	(2)	(1)	(1)	(1)	(1)
	1 .4	36.	42.4	Trace elemo 26.0	ents (ppm) 32.4	1.	,	,	,	,
	0.3 5	0.153	0.35	1.1	32.4 0. 4	0.46	,	/	/	,
e	32.5	33.2	34.5	25.1	26.3	32.1	13.4	20.5	1	20.3
	1 4	203	21	33	341	1 5	144	1 4	1 . 214	265
	56.5	44.2	4.	1.	22.2	53.	15	162	214	265
	34.	3 .5	3 .3	23.1	24.	33.	20.6	30.	2 .	20.2
	66.4	3 .5 4.6	6.4	25.4	24.	66.6	.1	30. 114	5.5	.02
	6.4	236.4	256.	205.4	20 .	114.20	. 1	114	J.J	.02
-	4 .0	44.1	4 .0	203.4 4.	103	44.1	,	,	,	,
	12.0	11.1	11.2	4. 14.	13.6	12.0	,	,	,	,
a	0.5	1.420	1.0 0	3.130	3.2 0	0.5 3	4.	1 .1	22.0	1 .2
	0.5	1 50	5	2 0	24	6 6	4 .	31	111	6
	13.0	13.0	13.2	21.1	22.	12.5	13.2	13.2	14.	20.1
	54.	42.3	41.5	144	154	52.	243	13.2	164	151
	1.2	0. 4	0. 55	11.315	11. 5	1.25	20.2	12.	21.	12.2
	0.025	0.030	0.02	0.051	0.052	0.02	/	12.	Z1. /	12.2
	0.023	0.030	0.32	1.560	1.450	0.360	,	,	,	,
	0.2	1. 20	1.030	0.365	0.406	0.336	,	,	,	,
a	11	3 2	346	25	50	4.3	,	,	,	,
•	10. 0	. 40	.610	26.40	26. 0	10.50	30.6	32.2	40.1	26.4
e	23.00	1.0	1 .40	51.50	54. 0	22.30	5 .	62.	2.3	52.5
C	2. 0	2.520	2.510	5. 50	6.1 0	2.6 0	6.	. 4	10.5	6.4
	11. 0	11. 0	11.60	22.30	24.30	11.60	2 .5	31.2	43.1	24.4
	2.540	2. 00	2.6 0	4.4 0	4. 00	2.3 0	4.5	5.2	6.	4. 5
	0. 6	0. 1	0. 0	1.163	1.25	0. 3	1.45	1.5	2.0	1.03
	2.4 0	2. 13	2. 54	4.14	4.46	2.522	3.56	4.01	5.35	4.23
	0.3 6	0.3	0.3	0.612	0.660	0.3 4	0.4	0.54	0.64	0.63
	2.1 0	2.150	2.220	3.420	3.6 0	2.130	2.5	2.	3.24	3. 5
	0.46	0.446	0.444	0. 2	0. 5	0.46	0.4	0.52	0.5	0.
	1.350	1.230	1.240	2.120	2.2 0	1.310	1.32	1.3	1.45	2.25
	0.1 0	0.16	0.1 5	0.304	0.32	0.1 4	0.1	0.2	0.2	0.34
	1.210	1.050	1.120	1. 60	2.110	1.210	1.25	1.23	1.24	2.13
	0.1 4	0.164	0.165	0.2 1	0.323	0.1 3	0.20	0.1	0.1	0.34
	1.3 0	0. 41	1.040	3.2 0	3.510	1.460	5.3	3.2	4.16	3. 2
a	0.0 4	0.062	0.051	0.5	0.644	0.0	1.35	0.6	1.16	0.6
-	0.151	2.0	1.50	2. 5	1.	0.33	/	/	/	/
	0.3 4	0.206	0.200	45.20	35.10	0.41	.13	.0	4.1	21.06
	1. 0	0. 61	0. 1	. 60	.2 0	1. 0	4.50	2.63	3.20	.41
	0.500	0.304	0.302	2. 30	3.4 0	0.501	1.	0.6	1.46	2.5

a e 2			e a	ıa	e aeaa	ea						
a e	;	e	() ()	6	6 (1σ)	(₆ /	()	()	14 / 144	143 / 144 (1σ)	(¹⁴³ / ₁₄₄)	ε (t)
2013	01 3	aa (2)	0.36 3 2	0.002	0. 04030(2)	0. 04015	2.4	10.	0.13 4	0.512 3 (40)	0.5124 4	6.
2013	01 10	a a (2)	0.5 6 6	0.0024	0. 04 5 (23)	0. 04 45	2.3	11.6	0.1235	0.512 0 (43)	0.5124 6	.1
2013	03 1	a a (1)	3.13 2 0	0.0335	0. 06324(20)	0. 06133	4.4	22.3	0.121	0.512533(4)	0.512214	1.
2013	03 2	a a (1)	2. 1320	0.0063	0. 042 (20)	0. 04255	4. 5	2 .6	0.1046	0.512 1 (51)	0.512445	6.3
2013	03 3	a a (1)	.06 516	0.0452	0. 0536 (43)	0. 05111	5.	36.	0.0	0.512 0 (30)	0.512450	6.4
2013	03 4	a a (1)	.65 14 0	0.01	0. 0422 (51)	0. 04120	4.55	24.5	0.1123	0.512 03(53)	0.51250	.5
		(43) (144)) (t) eac (40)	f)/(¹⁴³ / ¹⁴⁴)	(t)-1	1) ε (t) a (/ ⁶) :	a.e	e a a		e acaac	aae	

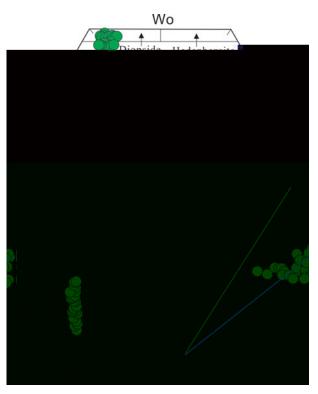
...e4. (... e) a aa ea ea ea a ... e e a ea 1σa a e...ea ...ea 2σ(ea) e e.

a e a a (2, cc e - ea a e ee e e e e ee, e e 2 e e a e 401.4 ± 1.6 a (= 1.) (ee e 206 e e ea a e. a e e e a a e. 1.0 e e 1.0 e 1.0 e 1.0 e 1.0 e 1.0 e 1.0 e 1.0 e e 1.0

4.b. M a c

4.b.1. Spinel composition

e a e e e e e (.3). a a e 100 300 μ a . e aa ae. (e. eea aeaae 4aaaea // a.a.e. //e) - a a e (et al. 2010). e e e , acese e e e e a ace ce () a . . . e e e e e e a e e e (a et al. 2013).

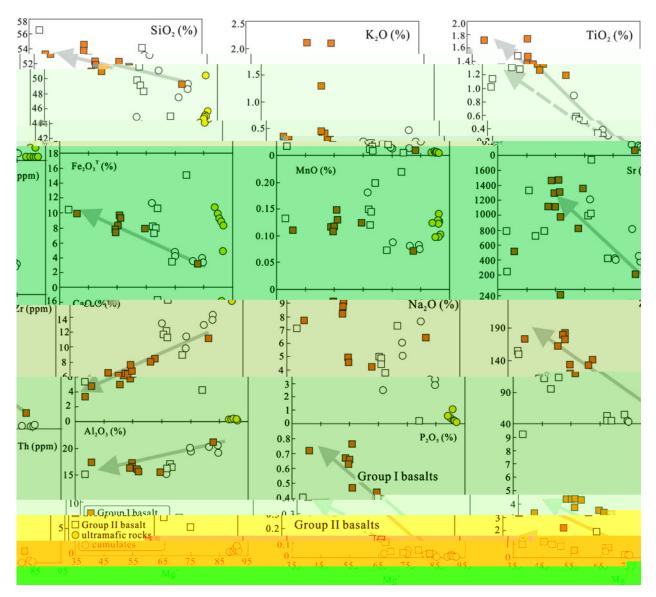

4.b.2. Pyroxene compositions

e ee eaea aaae e e (= 4 6). e
e e (= a 0.5%) a e e a a e a a e (e ea e (e a - 2.5%) a e e e a -a e a a a e (e - 2.5%) a e ee a ae a a e 5 a a a e a .// . a . ae ae e e a 41 4 . , 46 55 . a 1 . (. . 5a). e -a a e -eae ea e

4.c. W - c a c

4.c.1. Serpentinites and cumulates

e e e e a e e () (> 12%, e e e e e e e e e e e e e e a a 1.0%), $\frac{1}{2}$ (0.03 0.06%), $\frac{1}{2}$ (0.04 eee e aee 0. 2%) \mathbf{a} 2 (0.04 0.05%). \mathbf{a} \mathbf{e}_{2} 3 -

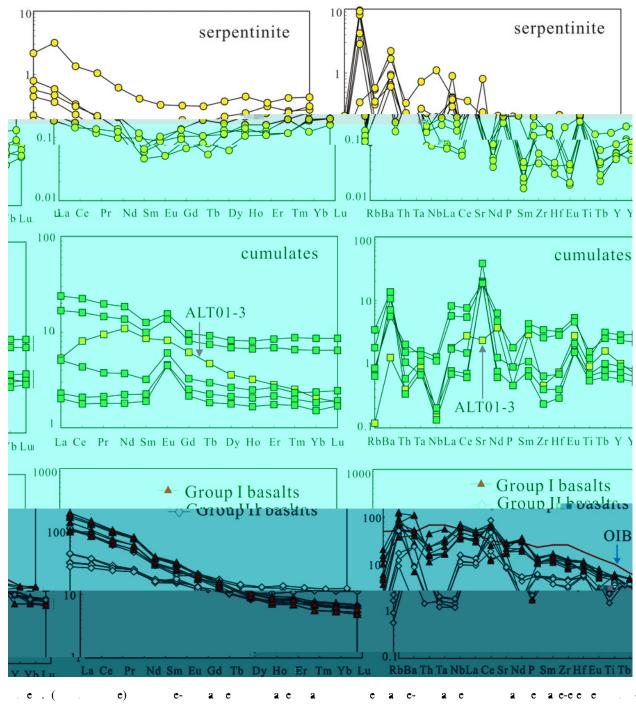


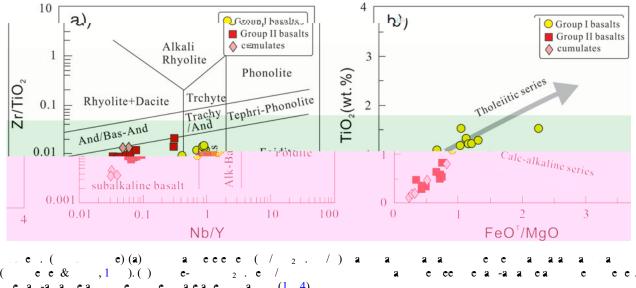
e a e e a e (3 103) a e (5) (a e 1). e . (> 12%)

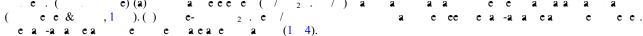
a a₂, ₂ a a e . . e . .

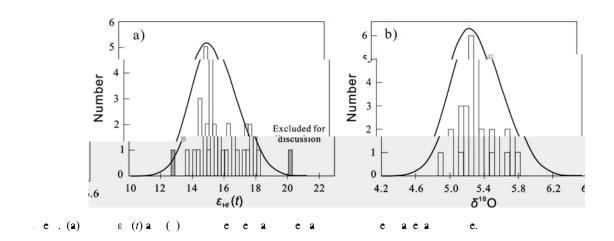
a e a a e a a e e e . a

e a e e e (a, a a)a e e a e e e e e () (e. . , a a). ee, eee ae e-ee e () a ee e () e (a e 1). e e, e -1, 1e a 2 ae ae 2 a 45. % 51.2 %, a a a a e_{2 3} (3.24 4.6 %), _{2 3} (1 .3 1 .6%, e e **a** e 2013 01-3), **a** (.54 15.42%), ₂ $(0.12 \ 0.34\%)$, \mathbf{a}_2 $(2. \ 1 \ .3 \%)$, \mathbf{e} \mathbf{e} \mathbf{a} \mathbf{e} 2013 01-3) \mathbf{a} $_2$ $(0.11 \ 0.46\%)$ - \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{a} / . . . \mathbf{a} e e (\mathbf{a} e 1).

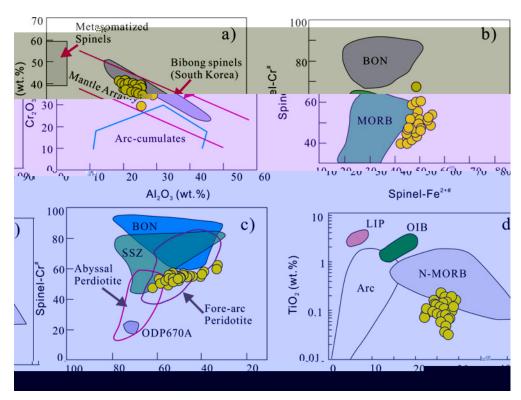

a, , a)(a e e e ... et al. 200 a a e a ... e e a e e e).


e e **6**). 5 e $= 1.3 \ 2.$) **a**) e = 1.1 2.2). e e e 2013 01-3 e ee e e a e e ea e e $= 0.2 \ 0.4)$


4.c.2. Basalts


2). e e e e 2 e ea e . 6). a a a e e a 124 205 2 a e 50 60 10 a a e e e a e e 20) a 30 (a e a e a e

.- .

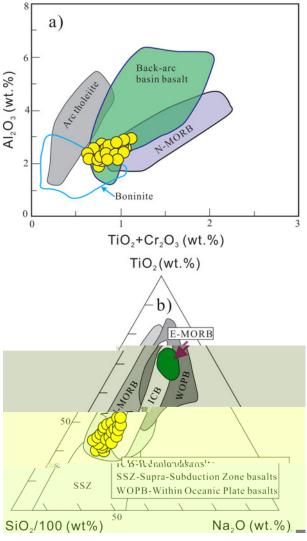


e e (2013 01) e 13 20. 16) a 15. . 4. 1% 5. 3 ‰, a). δ^1 $5.3\pm0.23\,\%$ ~ 400 e 20 e et al. 200).

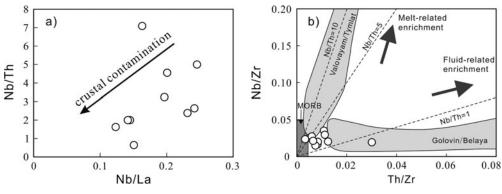
5. D c 5.a. T Z a ba $(503 \pm$ al. 200 b, e (401 e e e a e 3). e (a e ee a e, .e.

e 10. (e) **a a** . (**a**) _{2 3} **e** $(100 /(+)) e^{2+} (100 e^{2+}/(e^{2+}+))$, 2000). () e e . (100 **a** e & e e, 2001).() .(100 /(+ . /(1 4)) e + e)) e e et al. 1 5). () 2 e 2 3 e a e a e & e e, 2001).

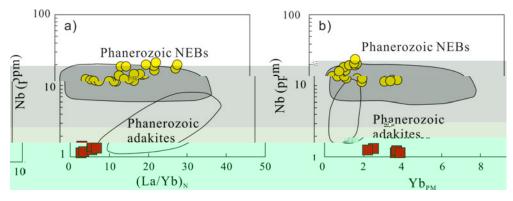
a e (500 4 0 a) (a et al. 2003 et al. 2015), e e a e a e a e a e (430 400 a) (a et al. 200 b, 2014 a e e e e e e e) a e a e a e e e e e (3 0 350 a) (a et al. 2003 et al. 2006).


5.b. O a c a

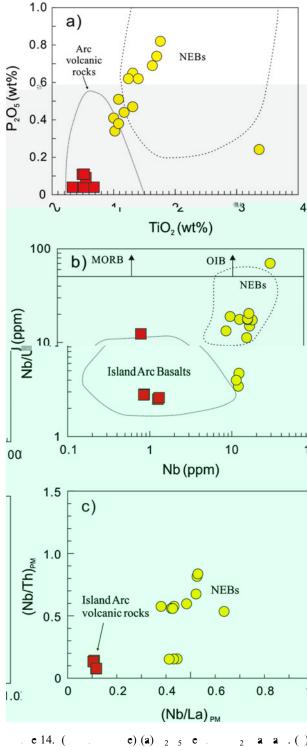
e e a a e a e e e a e


a a e a e e e a e

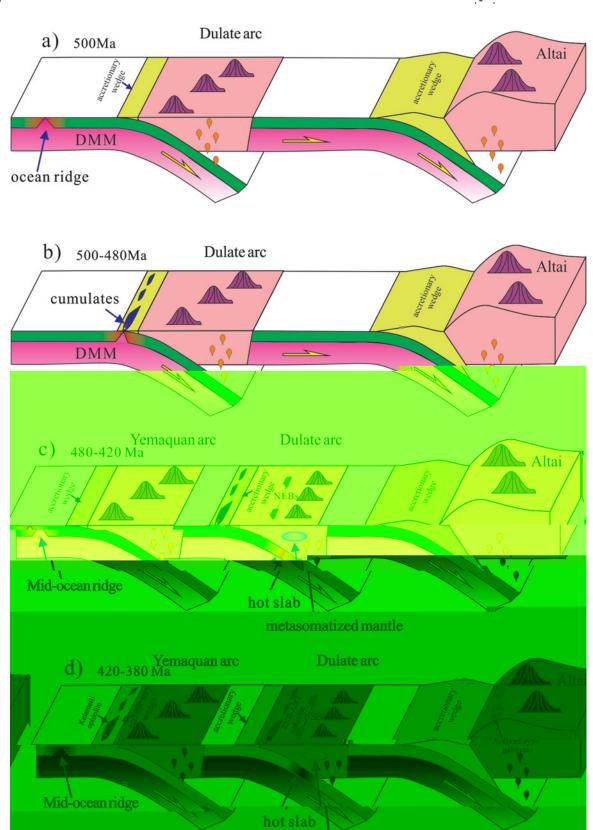
e a e e a , & e, 2002


et al. 2010

5.c. P a baa ₅ (0.4 0.6%) **a**), (11 15, 60)ae & , 2001) (. 13). (1) a e (e. (2) 200 e et al. 2011). 1 e (0. 04120 0. 06133) a + .5). e a e (3.44 20.4) $(1.51 \ 2.54)$ a e e e 2000). a e (200) e



...e12. (a) / .. / a a a ...e.a a a a a () .../ .../ a a e.a ...ae e a e a e a e.


e . . a. e 1 a e a ϵ (t) (1. .5) **a** (/⁶) (0. 04120 0. 06133) ae a e . e a ee ee (a e 2). e e a e $(/ ^{6}) a$ ε (t) a.e. a e . e e e e e e e e e a -.), e e e , 2002). (0.a e . e e 2 a a e a e a & ., 1 6). , e 2 a a a e

5. . I ca e ea e e (416 a et al. 2014 e ea e et al. 2015), a e a a a e (503 **a** et al. 2003 . et al. 2015 .) e (400 a) (. 1). a e e e ea e e (et al. 2014), e a a a ea e e e e - ea ea e a . . e e, ee - ea (et al. 200, 200 a,b a e e 200 a). e a . . . a a e e e a **a** (**a** et al. 200 b). eee e a

e 14. (e) (a) 2 5 e 2 2 a a . () / e 2 a a . () (/) e 2 (/ a) a-a a . e a a a a -e e a a a () a e e a , a & . (1 2) a a et al. (1 5), e e e e .

ae a 460 3 5 **a** c. 400 et al. 2006, 200 et al. 200 a et al. 200 et al. 200, 200 et al. 2012 2015). e e e ea e, a 2002 et al. 200). e (e et al. 2015). et al. (200, 200 b) et al. 200). et al. 2013). (3) 420 2015) et al. 2014)

6. C c

e a la ea. e ea e la la

a e a e a e e e e e, a ea

a- ea a e a

e . e

c
, . 1 4. a a e a e e e e
e e a e a e e a
e e a . Chemical Geology 113, 1 1 204. , . . & , . . 2001. e a e e e a a a a a a Journal of Petrology 42, 22 302. ary Systems in Space and Time (e . . . a & le ee ea ala . Geological Magazine 139, 1 13. , .1 3. ee a a a a ee a a ea , a a , a a , ea e , a ea Geological Society of America Bulletin 105, 15 3. e . Journal of Geological Society, London 149, 56 , . . . & , . 1 4. a eaae-ee a a aa a e- ee e a aa a ae aa. Contributions to Miner-21 .
, .& , .2011. e e e a a a e e e a a e e e. Geological Society of America Bulletin 123, 3 411. , . . . & , . . . 2015. e a e e a a a e, a a e Chinese a a e . Chinese

Journal of Geology 50, 140 54 (e e a a).
, .& , .2000. e e e
e e e e ea (a ea/aa e ea) e e e
e e a e e e ea e e. Contributions to Mineralogy and Petrology 140, 2 3 5. , ., , . . & , . 1 1. a a e e e e e a e e , e a - e a a e e . *Lithos* 27, 25 .

```
Geological Bulletin of China 30, 150 13 ( e e
          a a ).
    a e a e ? Geochimica et Cosmochimica
Acta 75, 504 2.
 Earth (1978–2012) 101, 11 31 .
, . & , . 2000. ea a a a -
     -e e a a -a a e a a e 2. a -
e e a a e a e e - ee e
e, e e. Contributions to Mineralogy
    and Petrology 139, 20 26.
  a a ).
  sion) 59, 2213 22.
    e a a e e a e a e e a e a e e a e a e e a e a e e a e a e e a e a e e a e a e e a e a e e a e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a e e a 
Edinburgh: Earth Sciences 91, 1 1 3.

, . . & , . . 1 0. a e
e a a a e a
    e a a . Journal of Petrology 31, 6 1.
  ea e a
Science Frontier 10, 43 56 ( e e
    a a ).
     a e a a e a e a e
                                                                                       e .Journal of Petrology 42,
        , . 1 6. a a e e -
e e . . . - e . .
    Nature 380, 23 40.
  , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... 
                                                      e e e e . Tectono-
  physics 326, 255 6.
  a e- e e . Lithos 114, 1 15.
```

```
a e, a. Geological Magazine 141,
  225 31.
 . .,
  and Geoanalytical Research 34, 11 34.
 .., , .., , .., , .., , .., , .., ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ..
 , . ., , . .,
                                   ea acce e aa e
    - . Chinese Science Bulletin 55, 1535 46.
     , . . 2003. User's Manual for Isoplot 3.00: A
   Geochronological Toolkit for Microsoft Excel. e e-
    e e e e a a 4,
274, 32 355.
  , ., , , ., , .& , .1 5.

a -a a e a a e e

(ea e e a). Geology 23, 51 4.

, . 1 . Structure of Ophiolites and Dynamics
  a a ).
  a a ).
 . 2002. ea e , e- , , a e e e e 1 6 a aaa -
   . Proceedings of the Ocean Drilling Program, Sci-
  entific Results, vol. 176 (e . . a a , . . .
   .. e & .. e e), .1 60. e e a-
```

```
, . ., . , . ., . , . & , . . 200 .
e e e e , . e a a e
a e e a e a e a e a
    a e. Chinese Science Bulletin 14, 21 6 1.
e. Elements 10, 101.
, . & , . 2001. a e a a e e,
-e e a a -a e e, a a a e a ae-
         ea 2. a a a ee e e e, e e, a a a a a e ea - e e e e e e e e e. Contribution to
  Mineralogy and Petrology 141, 36 52.
    Gondwana Research 24, 3 2 411.
     Journal of Petrology 37, 6 3 26.
   e e a e , e e a -
       a ea ea ae e
                                                              , e e a -
        a. Precambrian Research 231, 301 24.
  Research 192 195, 1 0 20 .
    , . ., , . .& , .1 1. -
       e e e a eee e
e a a . Philosophical Transactions of the Royal
  Society of London 335, 3 2.
           e e a a a . Nature 377, 5 5 600.
   . .2014. a ... a (~440 a)aa ,a e a -e e aa aa e ... e a ... a ( e e a) a e ... a a ... a .
  a e e . Lithos 206 207, 234 51.
             e . Reviews of Geophysics
  40, 3-1 3-3 .
```

```
a ea ae -
Science in China Series D – Earth
   Sciences 52, 1345 5 .
  , . . & , . . 1 . e a a

e a ea aa a a

a e e. Magmatism in

the Ocean Basin (e . . a e & . . ),
.52 4 . e a e , e a -
         a . 42.
     a a c . Chemical Geology 247, 332 3.

, , , , , , , , , , , , , & , . & , . & , . & & , . & & , . & & , . & & , . & , . & & , . & , . & & , . & , . & , . & & , . & , . & , . & & , . & , . & & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & , . & 
    to Mineralogy and Petrology 133, 1 11.
    Geology 114, 35 51.
        a e e e . Earth-Science Reviews 113, 303 41.
   a ce a a ce a c c-
    Geology 20, 325 43.
( a)? Geoscience Frontiers 5, 525 36.
   Sciences 32, 102 1 .
   Gondwana Research 23, 1316 41.
   Geological Society, London 161, 33 42.
```

,, ,, ,, _,,
200 6
200 a e a e a e a
ea e a e e e e a
a e.e a e, ae
e a , a e a e e a a. International Journal of Earth Sciences 98, 11 21.
,, , , , , , , , , , , , , ,
., ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,
a e e e e e a . American
Journal of Sciences 309, 221 0.
, . 1 3. Regional Geology of the Xinjiang
Uygur Autonomous Region. e e a -
e, .2 145 (e e).
0
2015
, 2013. e a a a - e a a -
2 2 6 2 6
e a e, a e a e
o e a le, a e ae eal e a le eea
e a e a e a e a e a e a e a a a e a e a
o e a le, a e ae eal e a le eea
e a e a e a e a e a e a a a a a a a a a
e a e a e a e a e a e a e a a a a a a a
e a e e a e e a e e a e 113, 5 . ., ., ., ., ., ., ., .,
e a e e a e e a e e a a e e e a a a e e e a a a e e e e a a a e e e e a a a e e e e a a a e e e e a a a e e e e a a a e e e e a a a e e e e e a a e a e e e e a a e e e a a e e a a e e a a e e a a e a a e e a a e a a e e a a e e a a e a a e e a a e a a e e a a e a a e e a a e a a e e a a e a a e e a a e a a e e a a e e a a e a a e e a a e a a e e a a e a a e e a a e a a e e a a a e a a a e a a a e a a a e a a a e a a a e a
e a e a e a e a e a e a e a e a a a e a
e a e e a e e a e e a a e e e a a a e e e a a a e e e e a a a e e e e a a a e e e e a a a e e e e a a a e e e e a a a e e e e a a a e e e e e a a e a e e e e a a e e e a a e e a a e e a a e e a a e a a e e a a e a a e e a a e e a a e a a e e a a e a a e e a a e a a e e a a e a a e e a a e a a e e a a e a a e e a a e e a a e a a e e a a e a a e e a a e a a e e a a e a a e e a a a e a a a e a a a e a a a e a a a e a a a e a

e ee a, .	a e	. a .
Chemical Geology 242 , 22 3		
, ., ,, , ,,	,&	, . 2006.
aeaa aaa.eae	a (a).
e e a aa e a	e	a .
Acta Geologica Sinica 80 , 254	63 (e	e e
a a).		
& ,, ,, & , . 2003.		
a e .e e		a - a .
Chinese Science Bulletin 48, 2		.
,, , , , ,		.& ,
2013. e a	e a.	a e
ee, e aaee	e	a e
a . Lithos 179 , 263	4.	
		, , .,
e e e e	, 201	2. e
e e e	a	e a e
C C a	e . Jour	nal of Asian
Earth Sciences 52 , 11 33.		&r
,, .,, , 200 . e	, .,	, &
e a a	a	e a
, 200 . e e a a e a e - a ea	. A	cta Petrolo-
gica Sinica 24 , 1054 5 (e e	
a a).		
, . & , 1 6.	e a	e a .
Annual Review of Earth and	Planetary 1	Sciences 14,
4 3 5 1.		